Pre-steady-state analysis of ATP hydrolysis by Saccharomyces cerevisiae DNA topoisomerase II. 2. Kinetic mechanism for the sequential hydrolysis of two ATP.
نویسندگان
چکیده
In the preceding paper, we showed that DNA topoisomerase II from Saccharomyces cerevisiae binds two ATP and rapidly hydrolyzes at least one of them before encountering a slow step in the reaction mechanism. These data are potentially consistent with two different types of reaction pathways: (1) sequential ATP hydrolysis or (2) simultaneous hydrolysis of both ATP. Here, we present results that are consistent only with topoisomerase II hydrolyzing its two bound ATP sequentially. Additionally, these results indicate that the products of the first hydrolysis are released from the enzyme before the second ATP is hydrolyzed. Release of products from both the first and second hydrolyses contributes to the rate-determining process. The proposed mechanism for ATP hydrolysis by topoisomerase II is complex, having nine rate constants. To calculate values for each of these rate constants, a technique of kinetic parameter estimation was developed. This technique involved using singular perturbation theory in order to estimate rate constants, and consequently identify kinetic steps following the rate-determining step.
منابع مشابه
Steady-state and rapid kinetic analysis of topoisomerase II trapped as the closed-clamp intermediate by ICRF-193.
DNA topoisomerase II uses a complex, sequential mechanism of ATP hydrolysis to catalyze the transport of one DNA duplex through a transient break in another. ICRF-193 is a catalytic inhibitor of topoisomerase II that is known to trap a closed-clamp intermediate form of the enzyme. Using steady-state and rapid kinetic ATPase and DNA transport assays, we have analyzed how trapping this intermedia...
متن کاملYeast topoisomerase II is inhibited by etoposide after hydrolyzing the first ATP and before releasing the second ADP.
Topoisomerase II-catalyzed DNA transport requires coordination between two distinct reactions: ATP hydrolysis and DNA cleavage/religation. To further understand how these reactions are coupled, inhibition by the clinically used anticancer drug etoposide was studied. The IC(50) for perturbing the DNA cleavage/religation equilibrium is nucleotide-dependent; its value is 6 microM in the presence o...
متن کاملTopoisomerase II drives DNA transport by hydrolyzing one ATP.
DNA topoisomerase II is a homodimeric molecular machine that couples ATP usage to the transport of one DNA segment through a transient break in another segment. In the presence of a nonhydrolyzable ATP analog, the enzyme is known to promote a single turnover of DNA transport. Current models for the enzyme's mechanism based on this result have hydrolysis of two ATPs as the last step, used only t...
متن کاملDivision of labor--sequential ATP hydrolysis drives assembly of a DNA polymerase sliding clamp around DNA.
The beta sliding clamp encircles DNA and enables processive replication of the Escherichia coli genome by DNA polymerase III holoenzyme. The clamp loader, gamma complex, assembles beta around DNA in an ATP-fueled reaction. Previous studies have shown that gamma complex opens the beta ring and also interacts with DNA on binding ATP. Here, a rapid kinetic analysis demonstrates that gamma complex ...
متن کاملA two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide.
Escherichia coli Rep helicase catalyzes the unwinding of duplex DNA in reactions that are coupled to ATP binding and hydrolysis. We have investigated the kinetic mechanism of ATP binding and hydrolysis by a proposed intermediate in Rep-catalyzed DNA unwinding, the Rep "P2S" dimer (formed with the single-stranded (ss) oligodeoxynucleotide, (dT)16), in which only one subunit of a Rep homo-dimer i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemistry
دوره 37 20 شماره
صفحات -
تاریخ انتشار 1998